Enumerative Combinatorics presents elaborate and systematic coverage of the theory of enumeration. The first seven chapters provide the necessary background, including basic counting principles and techniques, elementary enumerative topics, and an extended presentation of generating functions and recurrence relations. The remaining seven chapters focus on more advanced topics, including, Stirling numbers, partitions of integers, partition polynomials, Eulerian numbers and Polya's counting theorem.
Extensively classroom tested, this text was designed for introductory- and intermediate-level courses in enumerative combinatorics, but the far-reaching applications of the subject also make the book useful to those in operational research, the physical and social science, and anyone who uses combinatorial methods. Remarks, discussions, tables, and numerous examples support the text, and a wealth of exercises-with hints and answers provided in an appendix--further illustrate the subject's concepts, theorems, and applications.
"The broad field of applications of combinatorial methods makes this book useful to anyone interested in operations research, physical, or social sciences. Provides a comprehensive coverage of enumerative combinatorics, and gives many illuminating examples and interesting historical notes students of combinatorics will find the book very useful as there are many theorems, all with complete proofs, and many exercises with hints and answers." -Journal of the Operational Research Society, Vol 55, no. 2, 2004
Charalambides, Charalambos A.
This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.