Introduction to Quantum Groups and Crystal Bases by Jin Hong, Hardcover, 9780821828748 | Buy online at The Nile
Departments
 Free Returns*

Introduction to Quantum Groups and Crystal Bases

Author: Jin Hong and Seok-jin Kang   Series: Graduate Studies in Mathematics

The authors start with the basic theory of quantum groups and their representations, and then give an exposition of the fundamental features of crystal basis theory. They also discuss its applications to the representation theory of classical Lie algebras and quantum affine algebras, solvable lattice model theory, and combinatorics of Young walls.

Read more
Product Unavailable

PRODUCT INFORMATION

Summary

The authors start with the basic theory of quantum groups and their representations, and then give an exposition of the fundamental features of crystal basis theory. They also discuss its applications to the representation theory of classical Lie algebras and quantum affine algebras, solvable lattice model theory, and combinatorics of Young walls.

Read more

Description

The notion of a "quantum group" was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C*$-algebras. In particular, the theory of "crystal bases" or "canonical bases" developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups. The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.The authors start with the basic theory of quantum groups and their representations, and then give a detailed exposition of the fundamental features of crystal basis theory. They also discuss its applications to the representation theory of classical Lie algebras and quantum affine algebras, solvable lattice model theory, and combinatorics of Young walls.

Read more

More on this Book

The notion of a "quantum group" was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C*$-algebras. In particular, the theory of "crystal bases" or "canonical bases" developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups. The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory. The authors start with the basic theory of quantum groups and their representations, and then give a detailed exposition of the fundamental features of crystal basis theory. They also discuss its applications to the representation theory of classical Lie algebras and quantum affine algebras, solvable lattice model theory, and combinatorics of Young walls.

Read more

Product Details

Publisher
American Mathematical Society
Published
28th February 2002
Pages
328
ISBN
9780821828748

Returns

This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.

Product Unavailable