Compact, self-contained text by a noted theorist presents essentials of modern differential geometry and basic tools for study of Morse theory. Advanced treatment emphasizes Morse theory's analytical rather than topological aspects. 1967 edition.
Compact, self-contained text by a noted theorist presents essentials of modern differential geometry and basic tools for study of Morse theory. Advanced treatment emphasizes Morse theory's analytical rather than topological aspects. 1967 edition.
Riemannian geometry is a fundamental area of modern mathematics and is important to the study of relativity. Within the larger context of Riemannian mathematics, the active subdiscipline of geodesics (shortest paths) in Riemannian spaces is of particular significance. This compact and self-contained text by a noted theorist presents the essentials of modern differential geometry as well as basic tools for the study of Morse theory. The advanced treatment emphasizes analytical rather than topological aspects of Morse theory and requires a solid background in calculus. Suitable for advanced undergraduates and graduate students of mathematics, the text opens with a chapter on smooth manifolds, followed by a consideration of spaces of affine connection. Subsequent chapters explore Riemannian spaces and offer an extensive treatment of the variational properties of geodesics and auxiliary theorems and matters. AUTHOR: Soviet mathematician Mikhail Mikhailovich Postnikov (19272004) worked primarily in algebraic and differential topology. He was on the Mechanics and Mathematics faculty of Moscow State University.
Soviet mathematician Mikhail Mikhailovich Postnikov (1927-2004) worked primarily in algebraic and differential topology. He was on the Mechanics and Mathematics faculty of Moscow State University.
Riemannian geometry is a fundamental area of modern mathematics, and the subdiscipline of geodesics (shortest paths) is of particular significance. Compact and self-contained, this text by a noted theorist presents the essentials of modern differential geometry as well as the basic tools for the study of Morse theory. The advanced treatment emphasizes analytical rather than topological aspects of Morse theory. Requires a solid background in calculus.
This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.