Hybrid Feedback Control by Ricardo G. Sanfelice, Hardcover, 9780691180229 | Buy online at The Nile
Departments
 Free Returns*

Hybrid Feedback Control

Author: Ricardo G. Sanfelice   Series: Princeton Series in Applied Mathematics

A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or of

Read more
Product Unavailable

PRODUCT INFORMATION

Summary

A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or of

Read more

Description

A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or off intermittently, triggering a discrete jump within the algorithm. Hybrid control systems feature widely across disciplines, including biology, computer science, and engineering, and examples range from the control of cellular responses to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid control systems.In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to hybrid control systems and develops new tools for their analysis and design. Hybrid behavior can occur in one or more subsystems of a feedback system, and Sanfelice offers a unified control theory framework, filling an important gap in the control theory literature. In addition to the theoretical framework, he includes a plethora of examples and exercises, a Matlab toolbox (as well as two open-source versions), and an insightful overview at the beginning of each chapter.Relevant to dynamical systems theory, applied mathematics, and computer science, Hybrid Feedback Control will be useful to students and researchers working on hybrid systems, cyber-physical systems, control, and automation.

Read more

Critic Reviews

"[A] thorough analysis of hybrid control and various powerful design tools to show that hybrid control is an essential design method."---Ba Khiet Le, MathSciNet

Read more

About the Author

Ricardo G. Sanfelice is professor of electrical and computer engineering at the University of California, Santa Cruz. He is the coauthor of Hybrid Dynamical Systems (Princeton).

Read more

More on this Book

A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or off intermittently, triggering a discrete jump within the algorithm. Hybrid control systems feature widely across disciplines, including biology, computer science, and engineering, and examples range from the control of cellular responses to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid control systems.In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to hybrid control systems and develops new tools for their analysis and design. Hybrid behavior can occur in one or more subsystems of a feedback system, and Sanfelice offers a unified control theory framework, filling an important gap in the control theory literature. In addition to the theoretical framework, he includes a plethora of examples and exercises, a Matlab toolbox (as well as two open-source versions), and an insightful overview at the beginning of each chapter.Relevant to dynamical systems theory, applied mathematics, and computer science, Hybrid Feedback Control will be useful to students and researchers working on hybrid systems, cyber-physical systems, control, and automation.

Read more

Product Details

Publisher
Princeton University Press
Published
12th January 2021
Pages
424
ISBN
9780691180229

Returns

This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.

Product Unavailable